
Let's get started.

The Basics
Python has eight basic data types:

Handling Numbers:

You can perform basic math in Python.
Use + for addition, - for subtraction, * for multiplication, and / for division.

Note that nothing is being output by these basic lines of code, as nothing is being printed. More
on that later.

Modulo [mod] operations return the remainder after division. Use % to divide and return
remainder.

Integer [int] - whole numbers: 3, 300, 26, etc.
Floating Point [float] - numbers with a decimal point: 2.3, 4.6, 100.0.
String [str] - Ordered sequence of characters: "hello", "Sammy", "2000", "コンピュータ"
List [list] - Ordered sequence of objects: [10, "hello", 200.3]
Dictionary [dict] - Unordered Key:Value pairs: {"mykey":"value,"name":"Frankie"}
Tuple [tup] - Ordered immutable sequence of objects: (10, "hello", 200.3)
Set [set] - Unordered collection of unique objects: {"a","b"}
Boolean [bool] - Logical value indicating True or False

2+1

#####

2-1

#####

2*2

#####

3/2

7%4

#####

#This would return '3'. However nothing will be printed to the console. See

above.

Exponents are expressed with two asterisks followed by the exponent number. For example, 2³
can be expressed as 2**3

Floor division is expressed with two forward slashes. This removes any remainder, rounded
down.

Order of Operations can be performed with parentheses.

Variables
Variables are names assigned to data types for easy categorization. For example, if I set
my_cats = 5 then any time my_cats is referenced in the code, it will always equal 5.
Variable names cannot start with a number. There cannot be any special characters in a
variable name.
Best practice is that variable names are all lowercase (aside from global variables). Avoid words
that are already special values in Python, such as "list" and "str".

Python uses dynamic typing, which means that you can reassign values to different data types.
For example:

This may cause bugs in your code if you aren't careful, so be vigilant in your code, and use
type() to find the data type of a variable if you are confused (for example type(my_cats))

A variable can reference itself upon reassignment. For example:

Now every time a is called, it will add 10 to its value.

7//4

#####

#This would return '1', because 4 does not divide evenly into 7 more than

once.

(2+10)*(10+3)

#Will return a different result than

2+10*10+3

my_cats = 5

my_cats = ["Goose","Uno"]

a = 10

a = a + a

Strings
Strings are sequences of characters using the syntax of single or double quotes.
'hello' , "Hello" , "I don't do that"

Indexing and Slicing can be used to grab subsections of a string. Indexing syntax uses
brackets [] and is used to grab a single character from the string. Indexing values always start
at 0.

String H E L L O

Index Position 0 1 2 3 4

Reverse Index 0 -4 -3 -2 -1

For example, if we just wanted to grab the letter E from the string "HELLO", we would use
"HELLO"[1]

Reverse indexing can be used in place of standard indexing if you want to work backwards from
the string. For example, if we wanted to grab the letter E from "HELLO" using reverse indexing,
we would use
"HELLO"[-4]

Slicing lets you grab a subsection of multiple characters. It also uses square brackets, and uses
the syntax of [start:stop:step] where start is a numerical index for the start of the slice,
stop is the index the selection goes up to but does not include, and step is the size of the
jump taken between slices.

Spaces do count as characters within a string, and therefore have their own index values. They
are one of a few characters often referred to as whitespace by the development community.

To print a string, use the print function with proper syntax.

Escape Sequences \n will print everything following the escape sequence in a new line. Note
that this does not work if a string is being returned from a function.
\t will add a tab (four spaces) following the command.

print("Hello World!")

#####

#OUTPUT > Hello World!

print("Hello World! \n I am learning escape sequences!")

#####

You can check the length of a string by using the len() function.

Indexing syntax is as follows:

where indexing a variable requires the variable name, followed by the square brackets, and the
character you want indexed inside the brackets.

Slicing syntax is similar, where you have the variable name and square brackets. However,
slicing returns a larger subsection of the string, and is expressed with colons. A basic string
slice would consist of starting in the middle of the string and returning the rest until the end.

Similarly, starting at the beginning of the string and ending toward the middle requires a colon in
the first position of the bracket.

As mentioned before, the stop index (second position in a slice) does not include the selected
character. In the example above, "3" technically indicates the letter 'd', but it is not included in
the resulting slice.

#OUTPUT > Hello World!

#I am learning escape seqences!

len('hello')

#####

#This will return '5', but note that it will not be printed to the console as

we did not use the print function.

mystring = "Hello World"

mystring[0]

#####

#OUTPUT > H

mystring = 'abcdefghijk'

mystring[2:]

#####

#OUTPUT > cdefghijk

mystring = 'abcdefghijk'

mystring[:3]

#####

#OUTPUT > abc

The third and final position in a slice is step size. It indicates how big of a step to take in the
slice. For example, mystring[::2] would return every other letter, or every second letter.

Combining all of these principles, slices can have a start, stop, and step size all at once.

Step sizes can also be reversed, like indexes. This can also be used to reverse a string.

Strings are Immutable, you cannot index/slice part of a string and set it as its own
object/variable. However, you can reference an indexed variable within a new variable.
For example, the following is NOT possible in Python:

However, the following IS possible:

You can Concatenate strings with +

mystring = 'abcdefghijk'

mystring[::2]

#####

#OUTPUT > acegik

mystring = 'abcdefghijk'

mystring[2:7:2]

#####

#OUTPUT > ceg

mystring = 'abcdefghijk'

mystring[::-1]

#####

#OUTPUT > kjihgfedcba

name = "Sam"

name[0] = "P"

#In this example, we are attempting to reassign the first letter of our 'name'

string from 'S' to 'P', which is not possible due to the immutable nature of

strings.

name = "Sam"

lastname = name[1:]

#In this case, we are creating a new variable by referencing a slice of

another string variable. our 'lastname' variable will end up being "am".

You can also concatenate via multiplication with *

One thing worth noting is that 2+3=5, but '2'+'3'='23'

String Formatting
Methods are a list of actions that can be performed within a string. For example, let's say x =
"hello world" . If you were to type x and press [tab], a list of methods will pop up. There are
several methods. Here are a few notable ones:

Print Formatting allows you to use .format to insert arguments into strings. The syntax looks
like this:

Where the curly brackets define where an inserted argument will go, and the second set of
parentheses define what will go there.
As another example:

name = "Sam"

lastname = name[1:]

print('P'+lastname)

#####

#OUTPUT > Pam

letter = 'z'

print(letter*10)

#####

#OUTPUT > zzzzzzzzzz

upper() will capitalize everything in a string
lower() will lowercase everything in a string
split() will create a list from the string. ["hello","world"] . This split is based on
whitespace if left blank, or the letter that's passed in. for example, x.split('l') will output
['he', '', 'o wor', 'd'] . Note how the letter that's passed in gets omitted from the
split.

print('This is a string {}'.format('INSERTED'))

#####

#OUTPUT > This is a string INSERTED

print('the {} {} {}'.format('fox','brown','quick'))

#####

Each argument was presented as a list within the second set of parenthesis, and printed in the
order supplied.
However, the presented variables can be indexed. Each argument is one index number. The
indexes go in the curly brackets.

You can also set keywords for your inserted values. This is like assigning arguments as
variables.

Float Formatting is used to increase the precision of a float. For example:

If I wanted to truncate that number in print formatting, I'd use this syntax:
{value:width.precision f}

Where:

This also works with whole numbers - the precision modifier will not affect the whole number,
but will still modify anything to the right of the decimal point.

#OUTPUT > the fox brown quick

print('the {2} {1} {0}'.format('fox','brown','quick'))

#####

#OUTPUT > the quick brown fox

print('the {q} {b} {f}'.format(f='fox',b='brown',q='quick'))

#####

#OUTPUT > the quick brown fox

result = 100/777

print(result)

#####

#OUTPUT > 0.1287001287001287

value = our inserted variable
width = minimum amount of characters to be used, including decimal point and whitespace
precision = number of decimal places to print (following the same rules as slicing.)
So using this formatting, we can truncate this number in print:

result = 100/777

print('{r:1.3f}'.format(r=result))

F-Strings provide a similar outcome with different inputs. An f-string will allow you to insert a
pre-defined variable directly into a string without having to format it. For example:

Lists
Lists are ordered sequences that can hold several object types. They use brackets and
commas to separate the objects. They support indexing, slicing, and can be nested.
You can check the length of a list with the len() function. Lists can be indexed and sliced like
strings, where index numbers represent objects in the list rather than individual characters. For
example, let's say my_list = ["one","two","three"]

List Objects "one" "two" "three"

Index Position 0 1 2

If you were to index this list, it might look like this:

If you concatenate two lists, it joins them together as a single list.
Lists are not immutable, meaning a single index can be redefined.

You can add data to a list with the .append() method. This will add whatever is passed into
the method to the end of the list.

name = 'Author'

print(f'Hello, my name is {name}')

#####

#OUTPUT > Hello, my name is Author

my_list = ["one","two","three"]

my_list[1]

#####

#OUTPUT > two

my_list = [1,2,3]

my_list[0] = "ONE"

#####

#Now 'my_list' is ["ONE",2,3]

my_list = [1,2,3]

my_list.append(4)

Conversely, you can remove an item from the end of a list with the .pop() method. This will
also return your removed value. You can remove an item from anywhere in the list by passing in
an index position. For example:

You can sort a list alphabetically or numerically with the .sort() method. This is a NoneType,
so it will not return a value. However, next time you call your sorted list, it will be indexed in
order. It will not do this if you have a mix of strings and integers. Running .reverse() will
reverse your list. This is also a NoneType.

Dictionaries
Dictionaries are unordered mappings for storing objects. Rather than being in an ordered
sequence, dictionaries use key:value pairing. This allows you to quickly grab objects without
needing to know an index location. Dictionaries use curly brackets and colons to signify keys
and associated values.
{'key1':'value1','key2':'value2','key3':'value3'}

Dictionaries vs Lists
Dictionaries have objects retrieved by key name. Objects in dictionaries are unordered and
cannot be sorted. Good for retrieving data whose index position isn't known or needed. Lists
are ordered, sortable, and can be indexed and sliced. Essentially: easy data retrieval OR
sortable and indexable data. In a dictionary, the keys are always strings.

Let's define the following dictionary:
my_dict = {'key1':'value1','key2':'value2'}

In order to retrieve any of the values, I just have to pass it into square brackets following the
variable.

Dictionaries can contain various data types including lists and even other dictionaries.

#####

#Now 'my_list' consists of [1,2,3,4]

my_list = [1,2,3,4]

my_list.pop(1)

#####

#Now 'my_list' consists of [1,3,4]

my_dict = {'key1':'value1','key2':'value2'}

my_dict['key1']

#####

#OUTPUT > value1

Dictionary calls can be stacked. Let's say we have a dictionary that contains a list:
dict = {'k1':[0,1,2]}

If I wanted to call the number 1, I call the key, and then the index of the list. Both in separate
square brackets.

If you want to add a dictionary entry to the end of the dictionary, call the variable name, pass
the new key into square brackets, and assign the new value like you would a variable name.

You can also use this method to overwrite existing dictionary entries.

Useful dictionary methods:

Tuples
Tuples are similar to lists, but they are immutable. Elements inside tuples cannot be reassigned.
Tuples use parentheses (1,2,3)
Tuples can hold multiple data types, and be indexed and sliced.
Some useful methods for Tuples:

dict = {'k1':[0,1,2]}

dict['k1'][1]

#####

#OUTPUT > 1

dict = {'k1':[0,1,2]}

dict['k2'] = 25

#####

#Now 'dict' contains two keys and values. {'k1':[0,1,2],'k2':25}

.keys() - returns only the keys of a dictionary

.values() - returns only the values of a dictionary

.items() - returns key/value pairings in individual parentheses (tuples)

.count(<data>) - counts the occurrences of the passed-in data.

.index(<data>) - indexes the FIRST occurrence of the passed-in data.
For example:
t = ('a','b','a')

If we wanted to count how many instances of the string 'a' were in this tuple, we would
run
t.count('a')

which would return 2

To index the first occurrence of 'a' ,
t.index('a') which will return 0`

Since Tuples are immutable, data inside of them cannot be changed or reassigned. Good for
data integrity; values cannot be accidentally reassigned.

Sets
Sets are unordered collections of unique elements. There can only be one representative of the
same object. Create a set by defining a variable:
myset = set()

Add data to the set by using the .add() method.
myset.add(1)

Now calling myset returns {1} . Note that just because it's in curly braces, that doesn't mean
it's a dictionary. You can also pass in a list with set(<list>) in order to only cast unique
values.

Booleans
Booleans are operators that allow you to convey True or False statements. True & False must
be capitalized when defining booleans, otherwise python will mistake it for a variable. None
data types can be assigned as placeholders, but they must also be capitalized.

Basic File I/O
You can open a .txt file saved locally on your device with open('filepath')
Two important things to note here:

If you want your .txt file to display accurate line breaks, use the .readlines() method. This
will still output \n at each line break, but it will be individual lines at the breaks rather than one

1. When you input the filepath, use double backslashes in windows. In MacOS and Linux,
single forward slashes are fine.

2. The filepath MUST be a string in either single or double quotes.
Let's set this function to a variable called myfile .
If you want to call the contents of the .txt file, you'd use the .read() method, which looks
like:
myfile.read()

This line of code will print the content of your file using python formatting (such as escape
characters at line breaks, etc.) If you attempt to run the above code again, it would just
output '' - this is because there is an invisible 'cursor' that starts at the beginning of the
.txt file, but it's at the end of the file when the .read() method is called. You can reset it
with the .seek(0) method.

long string. Each line is defined as values in a list, and can be indexed as such.

If you use the .open() method, you also have to use .close() for the same file, or else it will
be treated as constantly in use by your OS. You can keep from having to do this by using with
and as .

Where my_new_file is a new variable name set for the text file. Notice the indent on the
second line, the code in the second line only affects my_new_file . From there, we assigned a
new variable, contents to read out the text file from the first line of code. This also keeps you
from having to use .seek(0) every time you want to output the contents of the .txt file.

You can specify modes in the above code block in the parentheses of
open('my\\filepath\\document.txt*') . You can specify modes where the asterisk is,
preceded by a comma.

Logical Operators
Comparison Operators allow you to compare variables and output a boolean value.

You can use these in code by writing var1 == var2 where == is any of the above operators.
Important: Capitalization matters! Hi is NOT equal to hi .

with open('my\\filepath\\document.txt') as my_new_file

contents = my_new_file.rend

mode="r" - allows your code to read only
mode="w" - allows your code to write only, rendering an error from the .rend() method.
Will create a file if none exist.
mode="a" - allows your code to add to the end of your .txt file.
mode="rt" - allows reading and writing
mode="wt" - allows writing ands reading (overwrites current file or creates a new one if
none exist)
Extra notes about modes:
mode="a" will append wherever your cursor happens to be. To properly use the "a" mode,
use the .write() method rather than .read() .

== = "Are equal"
!= = "Are NOT equal"
> = "Is greater than"
< = "Is less than"
>= = "Is greater than or equal to"
<= = "Is less than or equal to"

Strings and integers are different. '2' is not the same as 2 .

Logical Operators can be used to chain together comparisons. The keywords for these are
and , or , and not .

You can run multiple simple comparisons at once, such as 1<2<3 . Alternatively you can write
(1<2) and (2<3)

The logical operator keywords can be used to produce a single boolean output based on
multiple comparison inputs.

If, Elif, Else Statements
These are Control Flow Statements and only execute code when certain conditions are met.
Control flow statements use colons and indentation. Proper syntax is as follows:

Note the colon at the end of the statement, and the indentation on the second line. Going
further, there are else statements, which is code that is run when the if condition is not met.

Note that the else state does not have a condition. It will run in the event that the condition of
the if statement is not met.
elif statements are a secondary condition to check for.

and - both comparisons are equally correct
or - one of the comparisons is true
not is used a bit differently. It returns the opposite boolean output. Syntax is not(1==1) .
This example would return False .

if some_condition:

#execute some code

if some_condition:

#execute some code

else:

#do something else

if some_condition:

#execute some code

elif another_condition:

#do something different

else:

#do something else

For Loops
Many Python objects are iterable - you can iterate over every element in said object, such as
elements in lists or characters in strings. For loops execute a block of code for every iteration.

For Loop Syntax:

This block of code does a few things. It first assigns a variable as a set. Then, the For Loop
terms are defined. For every item name in the defined variable, do this thing. Then instructions
are defined. Note the whitespace. The instructions defined in this example has the code print
each item name, but you can set those instructions to anything.
The variable item_name was not previously defined in the code. When you begin a for loop
with a known variable (such as my_iterable in this case) then you may define its contents with
any name you'd like.

This is where control flow begins. You can chain for loops and other processes to begin
manipulating data in a more complex way. For example

You can also us for loops on strings.

my_iterable = [1,2,3]

for item_name in my_iterable:

print(item_name)

#####

#OUTPUT > 1

#2

#3

my_list = [1,2,3,4,5,6,7,8,9,10]

for num in my_list:

if num % 2 == 0:

print(num)

#####

#OUTPUT > 2

#4

#6

#8

#10

mystring = "Hello World"

for letter in mystring:

print(letter)

#####

Tuple Unpacking is a way to process data in Python that involves removing data from tuples
into their own individual data types. For example, let's define a list of tuples:
mylist = [(1,2),(3,4),(5,6),(7,8)]

While there are technically 8 unique integers in this list, running len(mylist) would only return
4 , as there are only 4 tuples, each containing their own data. If you wanted to unpack these
tuples, you might do this:

Note that the parentheses on (a,b) when defining this variable aren't strictly necessary. You
can also only print one of the two members of the tuple by defining print(a) OR print(b) ,
but not both.

iterating through dictionaries is a unique challenge. Let's define an example dictionary:
d = {'k1':1,'k2':2,'k3':3}

If we were to try to print each item in the dictionary using a for loop, it would only print the keys
and not the values.

#OUTPUT > H

#e

#l

#l

#o

#W

#o

#r

#l

#d

mylist = [(1,2),(3,4),(5,6),(7,8)]

for (a,b) in mylist:

print(a)

print(b)

#####

#OUTPUT > 1

#2

#3

#4

#5

#6

#7

#8

d = {'k1':1,'k2':2,'k3':3}

for item in d:

To iterate the values along with the keys, you will need to use the .items() method.\

As you can see, this lists each key:value pair as tuples on their own line.
This means that you can use tuple unpacking to also unpack a dictionary:

A Nested Loop is essentially a loop inside of another loop.

While Loops
While Loops will continue to execute a block of code while a condition remains true. Syntax is
as follows:

print(item)

#####

#OUTPUT > k1

#k2

#k3

d = {'k1':1,'k2':2,'k3':3}

for item in d.items():

print(item)

#####

#OUTPUT > ('k1':1)

#('k2':2)

#('k3':3)

d = {'k1':1,'k2':2,,'k3':3}

for key,value in d.items():

print(value)

#####

#OUTPUT > 1

#2

#3

mylist = []

for x in [2,4,6]:

for y in [100,200,300]:

mylist.append(x*y)

#####

#OUTPUT > [200, 400, 600, 400, 800, 1200, 600, 1200, 1800]

where some_boolean_value is usually x==true . Note the indent on #do something - this is
where you would put the block of code to be executed.
You can also append while loops with an else statement.

Useful & Important Keywords For While Loops:

pass is used as a placeholder for loops when you haven't written their instructions yet. For
example:

This will do nothing, as the for loop is being passed.

continue is used to go back to the start of the loop.

In this example, we've defined 'a' as the trigger for the loop to restart, as such 'a' will not
be printed.

while some_boolean_value:

#do something

while some_boolean_value:

#do something

else:

#do something else

break : breaks out of the current closest enclosing loop.
continue : goes to the top of the closest enclosing loop
pass : does nothing at all.

x = [1,2,3]

for num in x:

pass

mystring = "Sammy"

for letter in mystring:

if letter == 'a':

continue

print(letter)

#####

#OUTPUT > S

#m

#m

#y

break ends the loop. If we were to replace continue with break in the example avobe, it
would only print S , as the letter 'a' breaks (ends) the loop.

Useful Operators and Functions
Range
The range() operator can create ordered ranges of integers. For example:

You can also specify a starting integer for the range. For example, if we defined range(3,10)
into the range function above, it would print all whole integers from 3-9.
Additionally, you can add a step size similar to indexing operations. range(0,10,2) would
return 0, 2, 4, 6, 8 .

You can also create a List with the .list() function. Piggybacking onto the range function
above, here is an example of casting a list using the range() and list() functions.

Enumerate is a function that acts as a counter, specifically with indexing objects within a
variable.

for num in range(10):

print(num)

#####

#OUTPUT > 0

#1

#2

#3

#4

#5

#6

#7

#8

#9

list(range(0,11,2))

#####

#OUTPUT > [0,2,4,6,8,10]

word = 'abcde'

for item in enumerate(word):

print(item)

#####

#OUTPUT > (0, 'a')

#(1, 'b')

Note that it outputs tuples, with the index position followed by the item. This means it can be
processed with tuple unpacking.

Zip puts together two lists, Let's define two lists:
mylist1 = [1,2,3]

mylist2 = ['a','b','c']

If we use the zip operator within a for loop, we can begin to combine them.

Note that the Zip function will only zip as much as the shortest list contains. If we were to
redefine mylist1 to have more numbers, it would still only output 3 sets of tuples, as that's the
number of objects in the shortest lists - mylist2

In
the in operator checks if a value is in a list, and will return a boolean value.

in works for all iterable objects.

#(2, 'c')

#(3, 'd')

#(4, 'e')

word = 'abcde'

for a,b in enumerate(word):

print(b)

#####

#OUTPUT > a

#b

#c

#d

#e

mylist1 = [1,2,3]

mylist2 = ['a','b','c']

for item in zip(mylist1,mylist2):

print(item)

#####

#OUTPUT > (1, 'a')

#(2, 'b')

#(3, 'c')

'x' in [1,2,3]

#####

#Output > False

Min/Max
These functions report the minimum and maximum values of lists.

Python has a built-in random library that must first be imported before it can be used.
from random import shuffle

Note that after import you can press tab to see a list of all importable items from the random
library.
With shuffle imported, we can do the following:

Now if we call mylist again, it will be in a completely random order.
Similarly, you can import randint to generate a random integer from a range.

The output of this code will be any random integer from 0-100.

Input
This operator allows accepting user input.
input('Enter a number here:')

This will generate an input box where a user can enter a value. To save this value as a variable
for use later in the code, you can cast the input to a variable:

Note that the user input will always output as a string. The user-input data must be cast into its
proper type before it can be used.

mylist = [1,2,3,4,5]

min(mylist)

#####

#OUTPUT > 1

#####

max(mylist)

#####

#OUTPUT > 5

from random import shuffle

mylist = [1,2,3,4,5,6,7,8,9,10]

shuffle(mylist)

from random import randint

randint(0,100)

result = input('Write a number:')

There are countless other useful methods and functions to be used in Python. You can usually
find a few by typing a variable name followed by a period mylist. and then pressing tab. You
will see a list of methods and functions populated in your IDE that can be used. Additionally,
more references can be found at docs.python.org.

List Comprehensions
List Comprehensions are a unique way of creating lists in python. Specifically, it prevents you
from having to use a for loop with the .append() function. An example of this latter option
would be

A list comprehension saves space by doing all of this on one line.

This can be done with any iterable object, including but not limited to strings, variables, ranges,
etc.
You can also run additional operations in a comprehension. For example:

You can also add things like if statements after the comprehension.

Intro to Functions

mystring = "hello"

mylist = []

for letter in mystring:

mylist.append(letter)

#####

#OUTPUT > ['h', 'e', 'l', 'l', 'o']

mystring = "hello"

mylist = [letter for letter in mystring]

#####

#OUTPUT > ['h', 'e', 'l', 'l', 'o']

mylist = [num**2 for num in range(0,11)]

#####

#OUTPUT > [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

mylist = [x for x in range(0,11) if x%2==0]

#####

#OUTPUT > [0, 2, 4, 6, 8, 10]

Functions allow the creation of a block of code that can be easily executed many times without
needing to constantly rewrite the same code. Creating a function begins with the def keyword,
which allows you to define a function.

def name_of_function():

Of course we begin by defining the function, then using snake casing to name the function.
Snake casing is all lowercase with underscores for spaces. Parentheses go at the end. These
can be used to pass in arguments and parameters. At the very end is a colon, which indicates
indentation. Everything indented after this line of code is inside the function.
Optionally (but conventionally) after the def line is a docstring. This is defined by three single
quotes ''' and is a multi-line comment that describes the function.

Following the docstring is the code that will be run each time you call a function. Note again that
everything inside the function will be indented. To call the function, you simply write the
function's name with parentheses, but not the colon.

Note how the last line of code in the above example is not indented. This is because we are
running the function that we just defined.
This function auto-defines name , such that any string you pass into the parentheses of the
function call becomes the data for the name variable.
Typically, rather than printing directly from the function, we use the return keyword, which
outputs the result of the function.

Functions follow the syntax of:

def name_of_function():

'''

Docstring defines the function

'''

def name_call(name):

'''

This function prints the passed-in string with a greeting

'''

print("Hello "+name)

name_call("Author")

#####

#OUTPUT > Hello Author

def say_hello():

print("hello")

Where creating a function begins with the def keyword, followed by the name you choose for
your function, and then open and closed parentheses. The parentheses are necessary whether
you define arguments or not. After the parentheses comes a colon, then a new, indented, line.
All code within a function must be indented. This is how you define what code is in a function
and what isn't. You can still use nested loops, but they need an extra tab.
When you define your function, you aren't actually running it, just creating it for future use,
much like a variable. If you want to actually run your function, you must call the function name
and parentheses, but not a colon.

Arguments
Arguments are what go in between the parentheses of your function when you define it. You
can name theses anything you want, as they'll be treated as variables that only exist within the
function. For example, let's rewrite the previous function:

Now we have an argument called name and our function needs that argument in order to run.

Essentially what we've done here is tell our code that name = "Author" , but only within this
function. Anywhere we use the name variable within this function, it will be replaced with
"Author" .
If we were to call this function without arguments, Python would throw an error. This is because
an argument is required per our definition. We can get around this by providing a default value
for the argument.

This way if you don't define an argument when you call say_hello() later in your code, it will
default to 'User' . If you do define an argument, it overrides the default value. Functions canb
e defined with multiple arguments. They must be separated by a comma when defining the
function, as well as when calling it.

say_hello()

###OUTPUT > hello

def say_hello(name):

print(f"Hello {name}!")

say_hello("Author"):

#####

#OUTPUT > Hello Author!

def say_hello(name='User'):

print(f'Hello {name}!')

Let's talk a little more about the return keyword. Return essentially is the culmination of a
function. In the previous example of add_num(2,3) , the code in that function ends with
return , meaning the returned value (5, in this case) will exist in the place of the function call
after it is run.
Another way to look at this is if your function is returning a value, anywhere that function exists
will be treated as that value. For example, in the larger scope of our code, the add_num(2,3)
function will be treated the same as if we had directly input 5 in that position.

NOTE: Ensure that proper data types are being passed into your function args. If you were to
call the same function as before but with strings, it would concatenate the strings rather than
add numbers.
add_num('2','3') will return '23' rather than the likely intended '5' .

Logic with Functions
The purpose of functions is to have a block of code that can be called quickly at any point. As
such all rules of logic and loops apply within a function. As an example, we can create a
function to check if a given number is even:

This runs a simple if/else statement and returns True if a number is even. Since we've created
a function, we don't need to write the if/else statement each time, just call the function with the
number as an argument and the code within the called function is run automatically.

Another note on return ,
Whenever a return is called within a function, that is considered the point where the function
breaks. If a return condition is met, the function outputs that value and stops running. Notice we

def add_num(num1,num2):

return num1+num2

add_num(2,3)

#####

#OUTPUT > 5

def check_even(num):

if num % 2 == 0:

return True

else:

pass

check_even(2)

#####

#OUTPUT > True

have pass in the else condition instead of return False , this is because if we were to
expand the function to accept multiple numbers or lists, the function would break after analyzing
just the first input and not all of them.

Let's create a new function to check if any single number in a list is even.

In its current state, this function will check if there are any even numbers in the whole list. If
there are, it will return True . Otherwise it returns nothing.
If we were to add return False under the else statement, this function would no longer work
properly. It would check the first number, return True or False depending on whether or not the
number is even, and then stop running because a return condition had been met.
The workaround for this would be to keep all the current code as-is, then add return False
outside of the for loop at the end.

This allows the for loop to run first, meaning the loop and function will break if an even number
is found. If the for loop completes and its return value is not met, the function defaults to
returning False and then breaks. We can take this previous function a bit further by returning a
list of all the even numbers, or returning False if there are none.

def check_even_list(list):

for num in list:

if num % 2 == 0:

return True

else:

pass

check_even_list([1,3,6])

#####

#OUTPUT > True

def check_even_list(list):

for num in list:

if num % 2 == 0:

return True

else:

pass

return False

def check_even_list(list):

evens = []

for num in list:

if num % 2 == 0:

evens.append(num)

else:

This function begins by defining a temporary variable, evens . Variables declared in side of
functions are not arguments, and they cannot be called anywhere in the code except within the
function in which they were defined. For now, it is an empty list. The function then iterates
through the provided list as before, but this time if it finds an even number, it adds it to the
evens list using the .append() method. Once the for loop is done, it checks the length of the
list. If there are more than 0 items, the evens list is returned. Otherwise the function returns
false.

Tuple Unpacking With Functions
Let's take a look at working with tuples within functions. I'll create a list made up of tuples, and
then write a function to determine which tuple contains the highest number, as well as its
associated name.

Let's analyze what's happening here:

pass

if len(evens) > 0:

return evens

else:

return False

check_even_list([1,2,3,4,5,6])

#####

#OUTPUT > [2, 4, 6]

sales_figures = [('Abby',100),('Billy',200),('Cassie',300)]

def employee_check(list):

current_max = 0

employee_of_the_month = ''

for employee,sales in list:

if sales > current_max:

current_max = sales

employee_of_the_month = employee

else:

pass

return (employee_of_the_month,current_max)

employee_check(sales_figures)

#####

#OUTPUT > ('Cassie', 300)

So this function makes use of tuple unpacking, which was discussed in the section For Loops.
We begin with a list made up of tuples - employees and their respective sales figures. We then
define the function to accept one argument (a list made of tuples.)
Inside the function we start with two variables - current_max and employee_of_the_month .
These are going to be u sed to track the values of each tuple, but for now they are placeholder
values. 0 and '' respectively.
We then begin a for loop that unpacks the tuples and checks their values. We defined
employee,sales as the names of the respective tuple values, so the code checks sales and
compares it to the current current_max variable. If the checked number is higher, it replaces
the current_max value. We also have else: pass , which does nothing if a tuple is not greater
than the current value.
Finally, we return our variables as a tuple. The employee of the month, and their respective
sales figures.

We can then unpack this further by just showing the name or sales that are returned by the
function. This can be done by creating two variables with a single line of code:
name,sales = employee_check(sales_figures)

Now we can either call name OR sales and find out the individual name or sales figures of the
employee of the month.

Functions Application - Three Ball Monte
Let's take a look at the code for a very simple "Three ball monte" game, and go over how it
works line by line.

from random import shuffle

def shuffle_list(list):

#This function shuffles and returns the contents of the passed-in list.

shuffle(list)

return list

def player_guess():

#Get the user's guess, cast it as an integer, and return the guess.

guess = ''

while guess not in ['0','1','2']:

guess = input("Pick a number: 0, 1, 2 ")

return int(guess)

def check_guess(list,guess):

#compare the index position of the shuffled list with the user's guess and

determine win/lose condition

First things we should notice are the following:

Let's tackle this:
from random import shuffle - this imports shuffle from Python's random library.

First Function - shuffle_list(list):

def shuffle_list(list): - we are defining our first of three functions. Note that it takes one
argument: a list. Also be sure to read the comment just under this line - it's important to
understanding what this line of code does at a glance.

shuffle(list) - this shuffles the list that was passed into the function using the random
library.

return list - this will return the newly shuffled list.

As we can see here, this first function is super simple - it just takes a list as input, shuffles it,
and spits it back out.

Second Function - player_guess

def player_guess(): - once again defining the function. Note that it does not take any
arguments. We can also surmise from the title of the function that there will be user input
involved. Once again, be sure to read the comment below this line.

guess = '' - We begin with an empty string as a placeholder variable. This will ultimately
become what the user inputs, but first we need a place to put it. Note that it's a string, as user

if list[guess] == 'O':

print("You Win!")

else:

print("WRONG, FUCKER! GET KILLED IDIOT")

print(list)

#create the list where the ball lives and run the code

ball = [' ','O',' ']

shuffle_list(ball)

guess = player_guess()

check_guess(ball,guess)

We open by importing shuffle from python's native random library. This was discussed in
Useful Operators and Functions.
Three different functions are defined first before any code is actually run.
After the functions are defined, the code consists of four lines that are run.

input is always processed as a string and must be cast into its appropriate data type. This is
discussed in Useful Operators and Functions.

while guess not in ['0','1','2']: - We are setting up the first part of our while loop.
Essentially we are sanitizing user input. If the user inputs anything other than 0, 1, or 2, it's
going to keep asking for input. Note also that this is a list of strings, not integers. Once again,
the user input will be processed as a string first.

guess = input("Pick a number: 0, 1, 2 ") - This is where we gather the user input. The
input box will read "Pick a number: 0, 1, 2". We are casting it as a variable for future use.

return int(guess) - This returns the user's input as an integer. Once the user input is
returned from this function, it is converted from a string to an integer for easier processing later
on in the code.

Third Function - check_guess

def check_guess(list,guess): - Defining our final function here, and this one takes two
arguments: the list that was returned from our shuffle_list function, and the guess from our
player_guess function.

if list[guess] == 'O' - Perhaps one of the most critical lines of this project. This creates an
if/else statement that checks the index position defined by the user's guess (remember it can
only be 0, 1, or 2) and if that index position matches the position of 'O' in the shuffled list, the
player wins!

print("You Win!") This is the win condition of the game. If the user's guess index matches
the ball position in the shuffled list, they're told that they win!

else: - The lose condition is met when any other input aside from the matching index position
is met. Therefore any other guess is incorrect and falls under the "else" condition.

print("WRONG, FUCKER! GET KILLED IDIOT") - Prints the lose condition message. Ideally
you, the developer, will be standing behind the player with a gun.

print(list) - Shows the position of the ball so the user can know just how big of an idiot they
were right before they die.

Run The Code

ball = [' ','O',' '] - Creates the list to be shuffled by the first function. Its contents are
three strings, one of which is a capital O representing the ball. The other two are null spaces,
indicating incorrect answers or empty cups.

shuffle_list(ball) - Calls our first function, shuffle_list() . Remember this function just
shuffles the list and spits it back out. Now our ball position has been randomized.

guess = player_guess() - Gets the integer of the player's guess by running player_guess()
and then casts it to a variable for future use.

check_guess(ball,guess) - This takes the shuffled list and the collected player input integer
and compares them, then returns either the win or lose condition depending on the result.

Conclusion

Overall this is a very easy coding project, and excellent practice for how functions work.

*Args and **Kwargs
*args and **kwargs are types of function arguments. They stand for 'arguments' and
'keyword arguments' respectively. Let's say we have a simple function that returns 5% the sum
of two inputs:

This is useful for two inputs, but what if we want to handle more than two? We could just add
more inputs in the function definition, but what if the number of arguments is arbitrary?
For this, you would define the function with *args in the parentheses.

all individual parameters passed into a function as *args will be automatically cast as a tuple
containing these parameters. Note also that the word 'args' is itself arbitrary. You can use any
word or identifier here as in regular function definition. As long as it is preceded by an asterisk,
it will function as above. That said, convention dictates that you should always use 'args'.

**kwargs function in a similar way, only instead of a tuple, it creates a dictionary. Syntax when
passing in kwargs looks like this:
some_function(fruit='apple',veggie='lettuce')

You are defining the key:value pairings as if they were variables being defined in the function
call.

Once again, the name 'kwargs' doesn't matter so much as the double asterisk before it, but
convention dictates that 'kwargs' should still be used when this is applied.

def function_name(a,b)

return sum((a+b))*0.05

def function_name(*args):

return sum(args)*0.05

Lambda Expressions, Map & Filter Functions
Lambda expressions are "anonymous" functions that are nameless and single-use. To find out
why this is useful, we first need to look at the map function.

Map

Let's say we have a function called square() that returns the square of an input number.
Additionally, we have a list called my_nums that contains several integers. We could use a for
loop to apply the square function to all the integers in our list individually, or we could use the
Map function to apply it globally.
Syntax for the Map function looks like this:
map(square,my_nums)

Where the first argument is the function, and the second is the object through which we are
iterating.
Running the above code won't produce much, so we have to iterate through it.

You could also use map as a single-line solution to return a list of all the numbers after they've
been through the square function:
list(map(square,my_nums))

It's important to note that we aren't actually calling the defined function with square() - we are
only defining the name of the function inside of map.

Filter

The filter function function returns an iterator yielding those items of the iterable for which when
you pass in the item into the function, it's true.
In English, this means that we pass in an object and a function much like before, but the
function must return a boolean (True or False). The filter function then iterates through the
object, and only returns the items that met the True condition.
For example, let's say we have a function called check_even that checks for even numbers.
We also have a list called mynums that contains all integers between 1-6. We can do the
following to cast a list of only [2,4,6] :
list(filter(check_even,mynums))

Lambda Expressions

Now for why we're here. Let's examine the following function:

for item in map(square,my_nums):

print(item)

This function can be turned into a lambda expression like so:
lambda num:num**2

The differences between the two are noticeable, but they both do the same thing.

`list(filter(lambda num:num%2==0,mynums))

Nested Statements & Scope
Scope refers to variable assignments in your code, particularly between functions and the
general script. For example, let's say we defined a variable at the start of our code - not within a
function. In this case, the variable is x=25 . Now let's say later on in the code we have a
variable named x that's defined in a function:

Our x variable will be handled differently depending on what we call. Running print(x) will
return 25, while print(printer()) will return 50. This is because Python has a set of rules to
determine scope. This is know as the LEGB rule. Let's break that down:

def square(num):

return num**2

No parenthesis. We define the lambda expression and then immediately give it the
parameters it needs.
No indents or multiple lines. Define the parameter and add a colon, immediately followed by
your code to be run.
No return keyword. It's implied that the lambda will always return the result of the run
code.
This is obviously not a replacement for functions., If you have more complex code to run, it's
best to turn it into a function.
We can use lambdas in place of function names for map and filter:
list(map(lambda num:num**2,mynums))

x = 25

def printer():

x = 50

return x

Local - Names assigned in any way within a function (def or lambda) and not declared
global in that function.
Enclosing function locals - Names in the local scope of any and all enclosing functions (def
or lambda) from inner to outer.

This is the order in which Python parses variable calls. It starts by looing at at local, then
enclosing, then global, then built-in.

As you can see, we have two variables called name . One is defined at the start of the code
outside of a function, and the other is defined within a function. We are calling the name
variable within another function nested inside of greet , where our name variable was
redefined.
What's happening here is that name was not defined in the hello function, so Python is
searching for any enclosing functions that define name . Note that this would produce different
results if greet() and hello() were independent functions rather than being nested.

Global (module) - Names assigned at the top-level of a module ile, or declared global in a
def within the file.
Built-in - Names preassigned in the built-in names module: open , range , SyntaxError ,
etc.

Local includes assignments within functions and lambda statements. For example, in
lambda num:num**2 the variable num is local only to that expression.
Enclosing is a bit more complex to visualize. Let's start with a block of code:

name = 'this is a global string'

def greet():

name = 'Sammy'

def hello():

print('Hello '+name)

hello()

greet()

#####

#OUTPUT > Hello Sammy

Global can be best described as a variable that exists outside of a function, whose
indentation is all the way to the left. In the previous example, the first name variable we
defined is a global variable.
Built-in is any function, modifier, name, or otherwise variable that already exists in python.
FOr example len , int , str , etc. Be very careful not to overwrite these. If ever you are
unsure if a variable name is a built-in python function, you can run help(name) If info is
returned about that name, it already exists as a built-in property.

Functionally, within the LEGB rule, you can have nested variables share the same name as a
global variable without modifying the global. This isn't best practice for readability, but it is
possible. However, let's say you wanted to modify that global variable and have it permanently
changed from within a function. This is possible with the global keyword.

Note here that x starts with a value of 50. We pull this global variable into func() with global
x , then change its value to a string that says 'NEW VALUE' . We then run func() , and then
print ONLY x , not func(x) . Note that the global value of x has been changed.

Object-Oriented Programming
Intro

Often abbreviated "OOP", Object-Oriented Programming allows for creating your own objects
that have methods and attributes. Previously, we've used methods such as .append() or
.list() . These methods use information about the object, as well as the object itself to
change or return results about the current object. As such, OOP allows programmers to create
their own objects, which allows for the creation of code that's repeatable and organized. As
python projects become larger, more OOP will be required to maintain organization and
repeatability.

OOP Syntax looks like this:

x = 50

def func():

global x

x = 'NEW VALUE'

func()

print(x)

#####

#OUTPUT > NEW VALUE

class NameOfClass():

def __init__(self,param1,param2):

self.param1 = param1

self.param2 = param2

def some_method(self):

#perform some action

print(self.param1)

Lots to note here. Firstly, we begin with the class keyword. This is the same thing as an
object, and is interchangeable in terminology (but not in actual code)
Next, note the camel case used in the class name. CapitalizedLettersNoSpaces . This is
conventional best practice, just like snake_case in function names. Moving to the next line,
note how we have def __init__(self,param1,param2) . While this looks like a function
definition, it's called a method when used inside of a class. This particular init method allows
us to create an instance of the actual object. note that the underscores surrounding the word
'init' are not optional.
We create the object with the self keyword, as well as parameters that we will be expected
when an instance of the object is created. When we pass these parameters into the init
method, we assign them to an attribute of the class. Then, we can create other methods within
the class, ensuring to pass the self keyword to specify that it's a method as part of the greater
class.

When first defining __init__ , we must first pass in the argument of self . This is to refer to
this copy/instance of the object for the duration of the code. Technically any keyword could be
used here, but by convention we must use self . Next we pass in any other arguments to be
defined as attributes within the method. Let's take a look at a more easy-to-understand
example:

So what are we doing here? First, we create the class named Dog . Then, in our initialization
method, we specify two arguments: self , which is required to instantiate the object, and
breed , which is used later in the method. On the next line, we define that the .breed attribute
is defined by the breed argument via self.breed = breed . Next, outside of the class
definition, we create a variable of the Dog class, and define the breed attribute as the string
'Lab' . Now, if we ask for the breed attribute of our my_dog variable, it will give us 'Lab' .

Of course you can add multiple attributes the same way. Add multiple arguments, and then
define them in the __init__ method with self.arg = arg where arg is whatever name you
give it.

class Dog():

def __init__(self,breed):

self.breed = breed

my_dog = Dog(breed='Lab')

print(my_dog.breed)

#####

#OUTPUT > Lab

*NOTE that if your attributes are meant to be specific data types, you must specify that using
documentation, comments, or docstrings. There is no way to ensure that any of your attributes
must follow a certain data type guideline. For example, in our Dog class, it is technically
possible to set our breed attribute to something other than a string, say 200 . Now every time
you call Dog.breed , it will return the integer 200 , which could break our code if we are
expecting a string.*

Class Object Attributes

These are attributes that are assigned to a class at the highest level so that all instances of this
calls have this attribute predefined. These go after your class keyword call, and before your
__init__ method definition. These are defined similar to variables. Let's continue building our
Dog class with a Class Object Attribute:

Class Object Attributes do not use the self keyword, because they affect every instance of the
class and not just one.

Methods

Let's talk more about these. Methods are essentially functions that live within a class, and often
use the attributes of a class to accomplish their goal. Let's clean up our Dog class and continue
building:

class Dog():

species = 'mammal'

def __init__(self,breed)

self.breed = breed

class Dog():

species = 'mammal'

def __init__(self,breed,name)

self.breed = breed

self.name = name

def bark(self):

print("WOOF!")

my_dog = Dog('Lab','Frankie')

my_dog.bark()

So the first several lines of code are familiar to us. We've created a class named Dog , set a
class object attribute defined as species = 'mammal' , created our init method, and
assigned attributes based on arguments. This time we've added a name attribute, and created
a method called bark . Note that this does use the self keyword. This is a super simple
method that prints WOOF! when called.
After this, we create a variable that is our Dog class type, and define its attributes. Note that we
don't need to specify breed='Lab' , we can just pass in arguments like a function. Finally, we
call our newly created method the same way you could call any other method such as
.upper() or .append() . We use the syntax of a dot, name, and open/closed parentheses.
my_dog.bark() .

If we wanted to have this dog bark its own name, we would change the print statement to
print("Woof! My name is {}!".format(self.name)) (similarly, we could use an f-string
rather than print string formatting. This is up to personal preference.) Note how we use
self.name for self-referential attributes rather than just name . This is because name is an
attribute recognized by the class, and hasn't been specified in the method arguments.

If we wanted to use an argument without the self keyword or a pre-defined attribute, we
would write our method like this:

Next, we would call my_dog.color("gray") which would print I am a gray dog! Note how
we need to define col as its own argument, as well as pass in a string containing the dog's
color when calling the method.

A couple quick notes:

in this case, area isn't an argument, but it's an attribute we can create from other logic.

#####

#OUTPUT > WOOF!

def color(self,col):

print(f"I am a {col} dog!")

Attributes don't necessarily need to be defined strictly from the arguments defined in the
__init__ method. For example, we can create multiple attributes from just one argument:

class Circle():

def __init__(self,radius):

self.radius = radius

self.area = (radius**2) * 3.14

Inheritance and Polymorphism

Inheritance is a way of creating new classes by using classes that have already been defined.
This is useful for reusing code that you've already written and reducing the complexity of your
program.

Let's create a base starter class:

Now that we have this base class, we can revisit our dog class from before, having it inherit the
properties of the Animal class

By passing another class into the parentheses of the Dog class, we have created a derived
class, which inherits attributes from the base class. In our __init__ method, we also call the
Animal init method, which creates an instance of the Animal class whenever the Dog class
is created.
This means that whenever we use the Dog class in our code, we are also able to call any of the
Animal methods. If you want to overwrite one of the Animal methods within Dog , you can do
so by simply creating a new method of the same name in the Dog class.

Polymorphism refers to the way in which different object classes can share the same method
names. Let's say we have two different classes - Dog and Cat - that do not inherit from each

Later in your class code, when you reference a class object attribute, you don't necessarily
need to use the self keyword. You can instead use the name of the class, such as
Cirlce.pi (or whatever your class name and class object attribute are called) This helps
with code readability, especially in larger projects.

class Animal():

def __init__(self):

print("Animal Created")

def who_am_i(self):

print("I am an animal")

def eat(self):

print("I am eating.")

class Dog(Animal):

def__init__(self):

Animal.__init__(self)

print("Dog Created")

other, but they both have methods called .speak() . Our Dog.speak() method prints woof!
and our Cat.speak() method prints meow! With Polymorphism, we can write code to call the
shared method names easily. One way would be with a for loop:

What this demonstrates is that we can build loops/functions around classes and assign them as
an argument (in this case, pet) for ease of use. A more useful approach would be to use a
function:

This way we can pass any class with the speak method into this function and get the results of
its individual .speak() method.

Special Methods

Special Methods allow us to use built-in operations in python such as len() or print() with
our own user-created objects. For example: normally we are able to use .len() on, say, a list,
but if we tried it with a class, it would return an error.
Let's create a class as an example:

We can now set a variable as an instance of this class: b = Book('Python Rocks', 'Jose',
200)

Now if we were to try and run print(b) , all it would return is the memory location of our Book
class. We can fix this with a special method.
Special methods are those that are surrounded by double underscores. We've seen one
already with __init__ . Special methods often have a unique role to play in the class and
aren't used the same way as regular methods without the underscores.
Going back to our Book() example, we can add the __str__ method. This method allows us
to define a string that will represent the class when necessary. Let's add it to our Book() class:

for pet in [mydog,mycat]:

print(pet.speak())

def pet_speak(pet):

print(pet.speak())

class Book():

def __init__(self,title,author,pages):

self.title = title

self.author = author

self.pages = pages

Now if we run print(b) , we will get Python Rocks is by Jose . A similar outcome can be
achieved with the __len__ method. This is what will return when you run len() on your class.
Let's add it:

Now in this case, running len(b) will return 200 .

You can delete an instance of a class using the del keyword. In this case, we could use del
b . If you wanted an action to take place upon deletion, you would specify the __del__
method.

class Book():

def __init__(self,title,author,pages):

self.title = title

self.author = author

self.pages = pages

def __str__(self):

return f"{self.title} is by {self.author}"

class Book():

def __init__(self,title,author,pages):

self.title = title

self.author = author

self.pages = pages

def __str__(self):

return f"{self.title} is by {self.author}"

def __len__(self):

return self.pages

class Book():

def __init__(self,title,author,pages):

self.title = title

self.author = author

self.pages = pages

def __str__(self):

return f"{self.title} is by {self.author}"

def __len__(self):

Now running del b would delete our Python Rocks book from memory, and print Python
Rocks has been deleted.

There are many more special methods, and it is advisable to familiarize yourself with them.

Modules & Packages
Pip Install & PyPi

PyPi is a repository for open-source, third-party python packages. Up until this point, we've only
used the standard libraries that come internally with python. There are many other libraries
available that people have open-sourced and shared on PyPi.

PyPi packages are installed via command line, not your programming IDE. This means that you
will need to use command prompt on Windows, or Terminal on Mac/Linux. You can install
packages with the command pip install <package> where <package> is the name of
whatever python package you want to install.

If you are unsure exactly what module or package you need in order to accomplish a task, you
can always google what python libraries are available for your task. From there you will find
documentation on installing and importing that library.

Creating Your Own Modules And Packages

Modules are just .py files that you can call in another .py script, and packages are a
collection of modules. When a package is created, there is an essential __init__ script that
must be created and stored in your package directory (the folder where all your modules are
stored) in order for the package to behave as intended.

For example, let's say we have two different .py files saved in the same folder:

And another file entirely, saved in the same folder:

return self.pages

def __del__(self):

print(f"{self.title} has been deleted.")

#mymodule.py

def my_func():

print("Hey, I am being called from mymodule.py!")

#myprogram.py

from mymodule import my_func

Now we can run myprogram.py from the command line.
NOTE: I am creating test environments using Linux, so henceforth I will be referring to
'command prompt' or 'command line' as 'Terminal' and using Linux terminal/Bash to accomplish
actions from the Terminal. Adjust as needed for your OS/Command line.

Note here that we need to have our Terminal open in the folder where our .py file is saved,
and then call python3 in order to run it. If done correctly, this should print "Hey, I am being
called from mymodule.py!"

When a project becomes sufficiently large, even modules saved in the same folder aren't
enough. In this case, we must create a package which contains multiple subfolders full of
modules. In all subfolders, we need a file named __init__.py This script is completely blank,
and only serves to indicate directories in a package.

Let's say we have a directory structure that looks like this:

📁main_folder

mymodule.py

myprogram.py

📁MyMainPackage

__init__.py

some_main_script.py

📁SubPackage

__init__.py

mysubscript.py

With this directory structure, I am able to import and call functions within myprogram.py from
every subfolder in this list. Syntax looks like this:

Let's note the imports first - myprogram.py is at the root of this project folder. To import a script
that's one directory deeper in the file structure, we call from <subfolder> import <script>
Note also how we are importing an entire script from a folder rather than one function from a
script. Next, we go another subfolder deeper by using a dot.

my_func()

cd path/to/file

python3 myprogram.py

#myprogram.py

from MyMainPackage import some_main_script

from MyMainPackage.SubPackage import mysubscript

from <folder>.<subfolder> import <script>

Now that we have these imported, we can call functions from these scripts using a similar dot
syntax.
mysubscript.function_name()

__name__ and '__main__'

Sometimes when you're working with larger python scripts, it's not uncommon to find the
following line of code at the bottom:
if __name__ == '__main__':

There is a built-in variable in python called __name__ that is automatically assigned to a script
when it is run. If you run a script from the terminal (Or anywhere else python scripts can be run
from) then the __name__ variable of the currently running script is automatically set to
"__main__" .

That being said, the above line of code specifies that if the current script is the one called and
currently running, then certain actions (specified by the developer) should run. Conventionally,
the way this is used is by defining all of your classes, functions, etc. above this line of code, and
then assigning your logic under if __name__ == "__main__":

Errors and Exception Handling
Intro

Error handling is a way to account for unexpected use cases for your code. Typically when
there is an error, the entire script stops. Error handling allows the script to continue running
even if there is an error. There are 3 main keywords associated with python error handling:

These keywords function similarly to if/else statements, where try is a block of code to be
checked first, and if there are errors, it will default to except

Normally the above block of code would fail, because Python can't add an integer and a string.
But with error handling, we can continue to run our code.

try - This is the block of code to be tried. (May result in an error)
except - This block of code will execute in the event of an error in the try block.
finally - A final block of code to be executed regardless of error.

def quick_sum(num1,num2):

print(num1+num2)

quick_sum(10.'10')

Now instead of crashing due to the int+string error, our code will default to printing "Hey, it
looks like you aren't adding right!"
You can also add an else statement at the bottom which will default when there are no errors.

Now let's get a little more advanced with specific except statements and finally statements:

Let's break down what's going on here:
In the try block, we are attempting to open a file as type 'r' and then write to it. This will
give a TypeError, as 'r' is read-only. In our first except block, we specify what to do
specifically when a TypeError is received. In the second except block, we don't specify any
error types, which means this block will execute if any other type of error is received. Finally, we
have the finally block, which will always run regardless of whether or not there was any type
of error.

A practical example of error handling would be to nest it inside a while loop.

def quick_sum(num1,num2):

print(num1+num2)

try:

quick_sum(10+'10')

except:

print("Hey, it looks like you aren't adding right!")

def quick_sum(num1,num2):

print(num1+num2)

try:

quick_sum(10+'10')

except:

print("Hey, it looks like you aren't adding right!")

else:

print("Math Successful!")

try:

f = open('testfile','r')

f.write("Write a test line")

except TypeError:

print("There was a Type Error!")

except:

print("There was a general error!")

finally:

print("I always run!")

Calling ask_for_int() will prompt a user for a whole number until one is provided thanks to
the while loop. If anything but an integer is provided, it ask again thanks to continue . If an
integer is provided, the loop ends thanks to break . Regardless of the input, it will always print
"I am here also" because of the finally statement.

Unit Testing

As you begin to expand into larger, multi-file projects, it becomes increasingly important to have
tests in place. This way, as you expand and update your code, you can run your test files to
make sure previous code still runs as expected.

One method we can use for this is an external library called pylint . Since it's external, it must
first be installed via the terminal:

Once you've installed pylint, you can test your code very similarly to the way you'd run it - open
a terminal in your script's containing folder and run:

Running this command will outpout a lot of data about your code. Some of the most important
lines are the first few right after the command is called. It will point out how many
styling/conventional errors are present, as well as errors in your code. In addition, you can see
the number of classes, functions, etc. in your code, how often they're called, duplicated lines,
etc. This tool is primarily useful for collaboration.

The Unittest Library

def ask_for_int():

while True:

try:

result = int(input("Please type a whole number"))

except:

print("That is not a whole number.")

continue

else:

print("Thank you!")

break

finally:

print("I am here also")

sudo apt install pylint -y

pylint <script>.py -r y

This library allows you to write your own test conditions and run them against your scripts. Test
scripts with unittests are written as their own .py files saved to the same directory as the script
you are trying to test. Best practice is to write your test cases in order from simplest to most
complex.

Let's say we have a very simple script that capitalizes the first letter of every word in a string:

Now we can write our own test cases for it in another script saved to the same directory:

Let's take a line-by-line look at what this script is doing:

#cap.py

def cap_text(text):

return text.title()

import unittest

import cap

class TestCap(unittest.TestCase):

def test_one_word(self):

text = 'python'

result = cap.cap_text(text)

self.assertEqual(result,'Python')

def test_multiple_words(self):

text = 'monty python'

result = cap.cap_text(text)

self.assertEqual(result,'Monty Python')

if __name__ = '__main__':

unittest.main()

1. We are importing Python's native unittest library to run our tests.
2. We import the script to be tested.
3. We create a TestCap class which inherits from unittest's TestCase class.
4. We define our first method to test a single word.
5. Defining the actual text to be used in the test. In this case, 'python'.
6. Setting the result variable to our cap_text function from the test script, and passing in

our previously defined text vairable.
7. Asserting that the test will pass if the result variable is equal to 'Python'
8. Creating a new method to test multiple words.

We can then run this script as we would any other, only instead of printing our variables or
calling functions directly, it returns the pass/fail state of each of our defined tests, as well as
details of each test.

Python Decorators
Decorators allow you to 'decorate' a function. In this case, to decorate a function means to add
additional functionality. If we have a basic function, it can only do what we've programmed it to
do. But let's say later on we need to use that function, but add extra steps. As of now, our only
options are to either rewrite our original function (which could break our code if it gets used
elsewhere) or write an entirely new function that copies all of the code of our previous function,
then adds the additional basic functionality.
Decorators exist to allow you to tack on extra functionality to an already existing function.
Decorators are denoted with an ampersat @ on top of the original function.

As a prerequisite, let's set up a function that returns other functions:

The basic premise here is that you can assign the hello function to a variable and its output
will be one of the two internally-defined functions depending on what you pass in for name . For
example, "Author" is our default name. So if we don't specify another name, we could assign
a variable like so
my_new_func = hello()

Now my_new_func() will return the output of hello() when called.

9. Setting our text variable to a multi-word string - 'monty python'
10. Once again calling our function to be tested and passing in our text variable.
11. Asserting that if the result is equal to 'Monty Python', then the test passes.
12. Checking that this is the main running script
13. Running our test using the unittest main() function

def hello(name="Author")

print('The hello() function has ben executed.')

def greet():

return '\t This is the greet() function.'

def welcome():

return '\t This is the welcome() function.'

if name == 'Author':

return greet

else:

return welcome

You can also pass a function into another function:

The output of this code will be as follows:

A critical thing to note in the above code and all code in this section thus far is the careful and
deliberate placement of parentheses, particularly after function names, and variables that call
functions. When a function is referenced in code without its parentheses, it will not execute. It is
simply being referenced. In the case of the previous example, we referenced the hello
function when we passed it into other , but we don't execute it (run its code) until we call it in
the final print statement of other . In this way, we can use functions as arguments rather than
their output.

Finally, we can talk about decorators. Let's set up two functions:

This code outputs the following:

def hello():

return 'Hello!'

def other(some_func):

print('Other Code Runs Here!')

print(some_func())

other(hello)

Other code runs here!

Hello!

def new_decorator(original_func):

def wrap_func():

print('Some extra code BEFORE')

original_func()

print('Some extra code AFTER')

return wrap_func

def func_needs_decorator():

print("Decorate Me!")

defcorated_func = new_decorator(func_needs_decorator)

decorated_func()

In this example, we have a very long and tedious line of code establishing our decorated_func
variable. With decorators, we can remove this entirely by simply adding one line before our
func_needs_decorator definition.

We still define the new_decorator() function above this, but when we define @new_decorator
above a function, any time we run the function below the decorator (in this case,
func_needs_decorator()) it will automatically run as if it's being passed in as an argument in
the decorator. Now we don't need to define or call our decorated_func variable. Instead,
running func_needs_decorator() will produce the exact same output as before. To disable the
decorator, just comment out @new_decorator or remove that line of code.

Decorators are typically used in python web frameworks such as Django or Flask, and are
useful in rendering certain parts of a website as you are developing it.

Python Generators
A generator in Python is a special type of function that is able to return a value, and then later
resume where it left off. The main difference in syntax between a function and a generator is the
use of a yield statement instead of return . When a generator function is compiled, they
become an object that supports an iteration protocol. This means that when they are called in
your code, they don't just return a value and then exit.
Generator functions will automatically suspend and resume their execution and state around
the last point of value generation. The advantage is that instead of having to compute an entire
series of values up front, the generator computes one value, and waits until the next value is
called for.
For example, the range() function doesn't produce a list in memory for all the values from start
to stop. Instead, it keeps track of the latest number and step size to provide a flow of numbers.
Let's explore how these work by starting with a non-generator function:

Some extra code BEFORE

Decorate Me!

Some extra code AFTER

@new_decorator

def func_needs_decorator():

print("Decorate Me!")

def create_cubes(n):

result = []

for x in range(n):

result.append(x**3)

This example function returns all cubed numbers from 1 to the user-specified number (n) . It
does this by calculating the results, storing them in a list, and then returning the list. This can
get very memory-intensive, especially as n gets larger, because every number is calculated up
front and stored in memory. We can turn this function into a generator by removing the list, and
using the yield keyword instead of return .

This turns our function into a generator, allowing us to generate values on the fly rather than
storing them in memory. Note that if you were to simply call create_cubes(10) , you wouldn't
receive the output. You need to iterate through generators using loops much like you would the
range() function.
There are two functions that are crucial to understanding generators: next() and iter() .
In our example above, let's say we've assigned the following variable: g =
generate_cubes(10) .
If we then call next(g) , we will get the next generation of the create_cubes() function. For
example, if we've already generated output from create_cubes() 5 times in our code, then
calling next(g) will output 125 , as it is 5³ (recall that the first number in a range is 0 by
default.) Once the function has maxed out the provided range, attempting to call next() again
will produce a StopIteration error.

The iter() function allows you to iterate through a non-generator object. For example, let's
say we have a string assigned to a variable: s = 'hello' .
Calling next(s) would give an error, as a string is not a generator. To fix this, we can assign s
as an iterable object with iter() . t = iter(s) .
Now we can call next(t) to iterate through the letters in our hello() string as if it were a
generator.

Advanced Python Modules
The following are several advanced modules built into python that have gone mostly
unmentioned thus far in these notes. The next section will be dedicated to these modules and

return result

create_cubes(10)

def create_cubes(n):

for x in range(n):

yield x**3

for y in create_cubes(10):

print(y)

some of their functionality. Note that I will not be covering all of the functionality of these
modules, so independent research will be crucial in uncovering all that they do.

Python Collections Module

The Python Collections Module implements specialized container data types. A container in
base python would be something like a dictionary or a tuple - a data type that stores other data.
The collections module has more specialized containers. As is the case with specialization, the
Container module won't always be necessary, but it can come in handy for certain use cases.
One such useful object is the Counter class. Let's say we have a list:
mylist = [1,1,1,1,2,2,2,2,2,2,3,3,3,3,3]

If we wanted to count the number of each unique item in this list, it would require a fairly
complicated function that creates a dictionary, iterates through the list, and for each object,
either create a new key or iterate the value +1 for each object. No fun.
Instead, we let the Counter do all the work for us.

Assuming our pre-defined mylist is what we pass into counter , the output would be:
Couter({2:6,3:5,1:4})

So as you can see, Counter automatically returns a dictionary of each unique element, as well
as the number of times it occurs in the passed-in object.
Counter can also count letters in a string, and even words in a sentence. To do the latter, you'll
need to make use of the .split() function. (Recall that .split() will separate a string into
unique strings based on the value passed into its parentheses. If none is specified, it uses
spaces.)

sentence = "How many unique words are in this unique sentence?"

Now we can call Counter(sentence.split()) and get a count of each unique word.

Another handy object from the Collections library is defaultdict - which is useful for assigning
new keys in a dictionary quickly. Let's look at a python standard dictionary first:
d = {'a':100}

Right now, calling d[a] would return a valid output of 100 . But if you were input any other
value to call d - say d['INCORRECT'] , you would receive an error. Specifically, a KeyError .
With defaultdict , you have the option to set a default value, so that if you pass in a key that
doesn't exist, it simply create that key with the new default value rather than giving an error.
Syntax looks like this:

from collections import Counter

Counter(mylist)

from collections import defaultdict

d = defaultdict(lambda:0)

The output of this code would be 0 .
It is important to note that the lambda keyword is necessary in defining the default value. You
don't have to write the actual lambda expression - this is pre-defined in the module class. Now,
any time you pass in a key expression that doesn't currently exist in the dictionary, a new key
will be created with our pre-defined value. In this case, 0 .

namedtuple sets out to improve tuple readability by adding name values to each index position
of a given tuple object. Creating a named tuple looks similar to building a class:

Note how we first create a type similar to a class- in this case, Dog . Once we specify the tyhpe
and all attributes or other data we'd like to name and store, we create the tuple by calling the
type (Dog) and specifying all info. Now if we ant to call any of these values, we simply call the
following:
whiskey.age

In this case, it will output 5 .
You still have the option to call index values such as whiskey[0] , but if your tuple is
particularly large, it can be useful to store its data in this way.

I will say this for all of these libraries, but I highly recommend looking at the documentation for
each of them on your own. There are some truly useful things to be found within python's
Collections module.

Python OS & Shell Utilities Modules

These modules focus on functionality for opening, reading, and writing files and folders on your
computer or the computer on which you run your script. We have established previously that it
is possible to create new text files with open() and write() . For example:

This creates a simple .txt file in whatever directory you open and run this script. The OS
module allows us to modify and navigate the file system of the computer on which you are
running the script. You can get your current filepath with the following:

d['WRONG']

from collections import namedtuple

Dog = namedtuple('Dog',['age','breed','name'])

whiskey = Dog(age=5,breed='Dachsund',name='Whiskey')

f = open('practice.txt','w+')

f.write('This is a test string')

f.close

If you run os.listdir() , it will create a list object of every file and folder in the current
directory. You can also specify which directory you'd like to ist by passing the filepath as a a
string into the listdir() function. Recall that file structure is represented by a double
backslash in windows, such as C:\\Users\\user1 . Linux and MacOS use single slashes such
as ~/home/Documents

You can use the Shell Utilities module (shutil) to move files and folders around. Let's assume
our script is in the same directory as our practice.txt file from before:

This will move the practice file into the user1 folder. Note how we specify a target (file to be
moved) and a destination (location to move it to) both represented as strings separated by a
comma.

There are 3 main ways to delete files using os and shutil :
os.unlink('filepath') - this deletes a single file at the specified path.
os.rmdir('path') - this deletes an empty folder at the provided path.
shutil.rmtree('path') - This deletes all files and folders at the specified path. USE
CAREFULLY

IMPORTANT! if you use any of these methods of deleting files/folders, they will become
unrecoverable. Files/folders deleted in this manner are deleted permanently rather than being
sent to trash. Fortunately, there is a module for this. At your command line, install the
Send2Trash module. As always, I am using Linux:

Now as long as you import send2trash in your script, you can remove a file by sending it to
trash rather than outright deleting it.

You can specify any file here as long as it is in the current directory.

import os

os.getcwd()

import shutil

shutil.move('practice.txt','C:\\Users\\user1')

pip install send2trash

import send2trash

send2trash.send2trash('practice.txt')

A very useful method from the os module is walk() . It requires on argument, which is the
'top-level' folder you want to examine. walk() looks at the directory you've provided, and
indexes all files, folders, and subfolders branching from it until it has no more subfolders to
open.

This script will print the names and contents of every file, subfolder, sub-subfolder, etc. until it
has gone through everything in the specified filepath.

Python Datetime Module

The datetime module allows for operations regarding date and time, time zones, elapsed time,
and operations between date/time models.
We'll start with the simplest function: time() . This module works on a 24-hour clock system,
so inputting 2 will default to 2:00 AM. The time function accepts inputs for hour, minute,
second, and microsecond (in that order) as well as timezone info. Let's take a look:

Since we only gave it two arguments, mytime defaulted them to 2 hours and 20 minutes. We
can call mytime.hour which will output 2 , and mytime.minute will output 20 . Calling
print(mytime) will print 02:20:00 . Anything undefined will automatically be assigned a zero,
and microseconds will only print if they have a value greater than 0.
This time() object only contains time data, and has no info on the current (or otherwise
specified) date. To store this info, we would use a date() object, or a combined datetime()
object. Let's start with date() .
The arguments accepted by date() are, in order, Year/Month/Day. So if you wanted to input
the date of writing this page of notes, it would be datetime.date(2025,8,18) . Alternatively,

import os

for folder, subfolder, file in os.walk(os.getcwd()):

print(f'currently in {folder}')

print('\n')

print('The subfolders are: ')

for sub_fold in subfolder:

print(f'\t Subfolder: {sub_fold}')

print('\n')

print('The files are: ')

for f in file:

print(f'\t File: {f})

print('\n')

import datetime

mytime = datetime.time(2,20)

you have the option of pulling the current date with datetime.date.today() .
If you wanted to store the date and time in a single object, you would use a datetime object.
Since that's also the name of the entire module, you import this one a little differently:

Now printing mydatetime returns 2021-10-03- 14:20:01 . The best way to remember the
order of arguments for datetime is to go from largest to smallest:
Year/Month/Day/Hour/Minute/Microsecond/Timezone Info.
You can also replace currently defined values with mydatetime.replace(year=2025) .
You can do arithmetic between dates/times by using either a date() or datetime() object.

Right now, if we were to call date1-date2 , we'd get an object unique to the datetime module:
datetime.timedelta(365) . The timedelta object has its own useful methods. For example,
if we turned the above into a variable: result = date1 - date2 we can call result.days to
output the number of days in this timedelta object. In this case, 365.

We can perform similar arithmetic with datetime objects.

These two dates are 1 year and 10 hours apart. The resulting timedelta from subtracting
datetime1 - datetime2 would present this in days and seconds. timedelta(365,36000) .
You could then do some simple math do find out how many hours this is. Continuing the code
from above:

As a final note, you can also call .total_seconds() on a timedelta object to output the
entire time as seconds.

from datetime import datetime

mydatetime = datetime(2021,10,3,14,20,1)

from datetime import date

date1 = (2021,11,3)

date2 = (2020,11,3)

from datetime import datetime

datetime1 = datetime(2021,11,3,22,0)

datetime2 = datetime(2020,11,3,12,0)

mydiff = datetime1 - datetime2

hours = mydiff.seconds/60/60

Python Math & Random Modules

These modules contain useful methods for doing math and generating randomness. We've
already used random.shuffle in previous projects if you've been following along, but here we
will expand on some of the other uses for these modules.
The math module is worth researching for the vast amount of useful mathematical methods it
has. We will go over a few of them here:
Let's say we have a value: value = 4.35 We can use math.floor(value) and
math.ceil(value) to return the nearest whole number. floor() rounds down, outputting 4 ,
and .ceil() rounds up, outputting 5 . Note that floor() will always round down, and
likewise ceil() will always round up, regardless of its relative median value. If you want a true
rounding operation, you can use round() which is built into python and not part of the math
module.
The math module also has various well-known constants, such as math.pi , math.e ,
math.inf , and math.nan (not a number).
With the random library, you can generate a random number from a range with
random.randint(a,b) , where a & b are the low and high numbers of your range.
You can set a seed at the start of your code so the random library will always produce the same
set of random numbers. This is useful for code testing and debugging. You can set this with
random.seed(value) where value can be any integer at all.
You can also pull a random item from a set list. Let's say we have mylist , which contains
every integer between 0-19. We can run random.choice(mylist) and it will return one value at
random from mylist . This doesn't remove it form the list, it only returns the value.
You can also return multiple values from a list. There are two ways to do so: sampling with
replacement, and sampling without replacement. Sampling with replacement means that it's
possible to return the same value multiple times. Sampling without replacement means that
each random number or value must be unique.
To sample with replacement, we call random.choices(population=mylist,k=10) where
population is where we are pulling from, and k is the number of values to be returned. This
will return a new list containing all of the randomly selected values.
To sample without replacement, we run random.sample(population=mylist,k=10)
Note that the keywords population and k are not optional in either of these method calls.

Python Debugger (pdb)

Sometimes when you are working with a lot of data, it can be easy to lose track of variables and
their values. If you run into an error in your code, you can insert a debug trace on a line just
before said error so you can check the values of each of your variables at that exact point in
your code. For example:

When you run this code, it will stop where you called pdb.set_trace() and ask for an input.
When you input a variable name, it will output its exact value as of this point in the code so you
can ensure all values are what they should be. You can also use this input box to perform
operations on variables, such as x+y , etc.

Regular Expressions (regex)

In base python, we have the ability to locate substrings within a string (ex: if 'dog' in 'dogs
are great'...) but we need to know the exact contents, case, spacing, etc. of the desired
substring. We don't have an easy way in base python to search for a patter within a string, such
as a phone number or email address.
The re library allows us to create a specialized pattern string and then search within text for
this pattern. As an example, let's say we are looking for a phone number: (555)-555-5555 . In
regex syntax, that would look like this:
r"(\d\d\d)-\d\d\d-\d\d\d\d . The lowercase 'r' outside the quotes indicates to python that
this isn't a normal string, and has regecs identifiers in it. The \d indicators are wildcards to
indicate any given digit. The parentheses and dashes aren't regex identifiers, they are just part
of the string. Regex also has quantifiers that can simplify this even further: r'(\d{3})-\d{3}-
\d{4}' is another way of writing the above example. The quantifiers in curly braces tell regex
how many of each indicator (\d in our case) to look for.

I highly encourage the independent research of the re and regex libraries. It is incredibly
useful, and holds multitudes of functions - so much so that an entire guide could be published
just on these libraries alone. I haven't even begun to scratch the surface here. If there is any
library from this guide that you search up, ensure it is this one.

Timing code for efficiency

Python has infinite ways of solving any given problem. If you find yourself in a position where
you have multiple different scripts to do the same thing, you can time each one to find out which
is the most efficient. This can be done by using the timeit module.
timeit is a bit odd in its input structure, as you have to input your code to be tested as a string
argument inside the timeit function. Think of it like this:

import pdb

x=5

x+=9

pdb.set_trace()

x+=7

Once you've defined your setup and stmt (statement) variables, you can time your code with
the following:

The number in the final argument place is the number of times you want to run your code in the
test. The resulting output will be the time it took to complete the test in seconds.

Working with .zip files

.zip files are compressed directories that are made to take up less space than their
uncompressed counterparts. They are also useful for transferring large amounts of data over
the internet without loss of quality.
Let's assume we have two example text files named fileone.txt and filetwo.txt . These
files exist in the directory where we plan to run this script. One way we can compress these .txt
files is by using the zipfile library.

Let's pause there. A few things to note:
First, note how the actual function call that we are making is capitalized differently from the
library name. This is important and not optional.
Second, the two arguments taken by the ZipFile() method are the name of the zip folder
(including its extension) and the 'mode.' Mode is similar to when we use the open() function, in
that 'w' is write mode.
Finally, when we run just the two lines of code above, it will create our comp_file.zip folder in
the directory in which the script was run. As of now, this folder is blank. Let's continue where we
left off:

setup = """

def defining_code() :

return 'This setup variable is a string defining the functions to be

dested, while keeping proper indentation'

"""

stmt = """defining_code()"""

import timeit

#Define your setup and stmt variables here

timeit.timeit(stmt,setup,number=500)

import zipfile

comp_file = zipfile.ZipFile('comp_file.zip','w')

The compress_type argument specifies the type of compression to be used. Zip Deflated is the
most common one, but you can read the zipfile docs to see what all the compression types
do. Once we have put all of our files into the .zip folder, we can call comp_file.close() to
close the folder and make it accessible on our computer.
Extracting a .zip file is a similar process:

Once we've defined our zip_obj variable, we have two options:
We can extract a single file from the folder with zip_obj.extract('filename.txt')
Or we can create a new, non-zipped folder with all of the contents of the .zip:
zip_obj.extractall('extracted_content')

Note that the argument taken by .extractall() is the folder name, meaning you can put any
string here to name your folder.
These zipfile functions also contain argument options to specify a filepath instead of
defaulting to the script directory, so as always, be sure to look up this library on your own time.

You can also zip an entire pre-existing folder with shutil :

Where dir_to_zip is the exact filepath to your folder (including the folder itself) and
output_filename is what the new .zip file will be called. 'zip' is the compression protocol
(as opposed to, say, tar.gz) You can extract with shutil using a similar method:

Where the final argument is the archive's filetype.

comp_file.write('fileone.txt',compress_type=zipfile.ZIP_DEFLATED)

comp_file.write('filetwo.txt',compress_type=zipfile.ZIP_DEFLATED)

import zipfile

zip_obj=zipfile.ZipFile('comp_file.zip')

import shutil

dir_to_zip = 'path\\to\\file'

output_filename = 'zipfolder_name'

shutil.make_archive(output_filename,'zip',dir_to_zip)

import shutil

shutil.unpack_archive('archive_name.zip','unpacked_filenmae','zip')

